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Abstract~ This paper proposes a constitutive equation for masonry-like materials with bounded
compressive strength. The general properties of this equation are proved and its solution is explicitly
calculated. Subsequently, a numerical method is proposed in order to solve the equilibrium problem
of masonry-like solids with bounded compressive strength. In particular the derivative of the stress
with respect to the total strain is calculated; this derivative will be used for calculating the tangent
stiffness matrix and then for solving the non-linear system, obtained with the discretisation into
finite elements via the Newton-Raphson method. Finally, this numerical method is applied to the
study of Mosca's bridge in Turin and to the study of a three-dimensional circular reduced arch
subjected to its own weight and a vertical load distributed along the extrados.

I. INTRODUCTION

Studying equilibrium problems of masonry solids requires above all a suitable choice
for the constitutive equation of the material. Since these materials are in general very
heterogeneous and their behaviour depends heavily on construction techniques, it appears
extremely difficult to formulate constitutive equations general enough for application to all
kinds of construction, but yet simple enough to permit solution of the main boundary
value problems encountered in practice.

In several cases of masonry arches and vaults it seems quite realistic to suppose
the material to be elastic, isotropic, non-resistant to traction and infinitely resistant to
compression. More precisely, one supposes that the infinitesimal strain tensor E is the sum
of an elastic part Ee and an inelastic part Ea and that the stress T, negative semi-definite,
depends linearly and isotropically on EO. Moreover, it is required that Ea

, interpreted as
fracture strain, be positive semi-definite and orthogonal to T. Thus one obtains a hyper
elastic material, usually called masonry-like, which has been studied by many authors. In
particular Del Piero (1989) detailed both the properties of the constitutive equations
and some conditions concerning the admissibility of loads. Lucchesi et ai. (1994b) have
generalised the constitutive equation proposed by Del Piero (1989), in order to take into
account that masonries are weakly resistant to traction, by allowing principal stresses to
reach a value (1"t > 0, in correspondence to which, fracture strains arise. (1"t, called fracture
stress, is a material constant which must be experimentally determined. The application of
this constitutive equation to masonry solids is rather questionable because the two parts of
the body separated by the fracture continue to transmit tensile stresses. Nevertheless, in
some cases the use ofthis constitutive relation can furnish information useful for the design,
as proved by Rossi and Sassu (1994), who have studied a masonry panel subjected to
seismic load.

Lucchesi (l994a, I994b) have proposed a numerical procedure for solving equilibrium
problems of masonry structures via the finite element method, The application of this
procedure to the study of arches (Lucchesi et ai., 1993), and vaults (Lucchesi et ai" 1994c)
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subjected to concentrated loads shows that by using the constitutive equation of masonry
like materials, the mechanism of collapse and the corresponding multiplier can be deter
mined very accurately.

The hypothesis that masonries are infinitely resistant to compression, although not
conservative, is justified in many situations by the fact that for particular load conditions
collapse occurs as a consequence of the mechanisms activated when the compressive stress
in the whole structure is inferior to its limit value. On the contrary, if an arch is subjected
to its own weight and a vertical load distributed along the extrados, the line of thrust
remains within the internal part of the arch and hinges do not form. Therefore, if the
material were infinitely resistant to compression, the load could be increased indefinitely
without ever reaching collapse. This result has suggested generalising the constitutive
equation of masonry-like materials by introducing a bound to the compressive strength.
More precisely, we suppose that, besides a positive semi-definite inelastic strain, a negative
semi-definite inelastic strain may occur and be interpreted as crushing strain. Moreover, we
suppose that the Cauchy stress has eigenvalues within the range [- (f, at], where ae

, like at,
is a material constant called crushing stress, which must be experimentally determined. We
obtain a hyperelastic non-linear material which will be called BCS masonry-like material
(masonry-like material with bounded compressive strength) or, more simply, BCS material.

In Section 2 we investigate some relevant properties of the constitutive equation of
BCS materials and explicitly calculate its solution for the two- and three-dimensional cases.

Then, in Section 3 we consider the boundary-value problem and prove that under
suitable conditions the solution of the global and incremental equilibrium problems is
unique in terms of stress: the former generalises the results obtained by Giaquinta and
Giusti (1985) and Anzellotti (1985) for masonry-like materials, the latter is necessary in
order to justify the use of incremental numerical techniques. In fact, it is proven that two
different load processes applied to a structure made up of a BCS material, having the same
final value and corresponding to which the solution of the boundary value problem exists,
produce the same stress field. This result is a direct consequence of the elasticity of BCS
materials, which shows the different behaviour of these materials and elastic-plastic ones.

The explicit solutions to the equilibrium problem of a circular ring and of a spherical
container subjected to two uniform radial pressures PI and Pc, acting. respectively, on the
inner and outer boundary, are calculated in Section 4.

In Section 5 we calculate the derivative of the stress with respect to the total strain.
This is needed in order to calculate the tangent stiffness matrix used in solving equilibrium
problems with finite elements via the Newton-Raphson method. The numerical method we
obtain generalises the method presented by Lucchesi et al. (I 994a, 1994b) for materials
infinitely resistant to compression.

In Section 6 we compare the exact solution for the circular ring calculated in Section
4 with the numerical solution. Moreover, we consider Mosca's bridge, in Turin, and
calculate the line of thrust by comparing the results of our analysis with those of Castigliano
(1879). Finally, we apply the numerical method to the study of a three-dimensional circular
reduced arch subjected to its own weight and a vertical load distributed along the extrados.
The distributed load is progressively increased until collapse is reached; then, the deter
mination of the line of thrust and the position of hinges at the instant of collapse allows
easy interpretation of the results of the numerical analysis.

2. THE CONSTITUTIVE EQUATION

In this section we describe the main properties of the constitutive equation of masonry
like materials with bounded compressive strength. Let us first present some notation: let
1/ be a three-dimensional linear space and Lin the space of all linear applications of 1/ into
r, equipped with the inner product A· B = tr (ATB), A, BELin, with AT the transpose of
A. Let us indicate as Sym, Sym-'- and Sym- the subsets of Lin constituted by symmetric,
symmetric positive semi-definite and symmetric negative semi-definite tensors, respectively.
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Let us assume that the infinitesimal strain E is the sum of an elastic part ECand of two
mutually orthogonal inelastic parts Et and ECcalled fracture strain and crushing strain,
respectively. Et is positive semi-definite and EC is negative semi-definite:

E = Ee+E'+Ec,

EtESym+,

ECESym - ,

E"EC = o.

Moreover, we suppose that the Cauchy stress T depends linearly on Ee,

T = C[Ee],

(1)

(2)

(3)

(4)

(5)

where C is a definite positive fourth-order tensor. We shall limit ourselves to the particular
case in which the dependence of T on EC is isotropic, and thus, ClEe] = 2/1Ee+ Atr (EC)I,
where the Lame moduli /1 and I, of the material satisfy the inequalities:

/1>0, 2/1+3A>0. (6)

Finally, we assume the existence of two positive material constants at and ao, namely the
maximum resistance, respectively, to traction and compression, such that:

T - a 'IE Sym - ,

T +acIE Sym+,

(T - atl) . Et = (T + aCI) . EC = O.

(7)

(8)

(9)

When the crushing stress aCgoes to infinity, relations (1)-(9) reduce to the constitutive
equation of the masonry-like material infinitely resistant to compression studied by Lucchesi
et al. (1994b).

Given E ESym, the Lame moduli and the constants aCand a" the constitutive equations
(1)-(5) and (7)-(9) have a unique solution (T, Et, EC). In fact, we shall explicitly construct
this solution; in order to prove its uniqueness, let (T j, Ej, En and (T2, E1, E3) be two
different solutions. For the elastic parts we have E~ = E - E~ - E\ and E2 = E - E3 - E1
and thus

By virtue of eqns (7)-(9) and the positive definiteness of C, we can write

= (T I - atl) . E1 + (T2 - atl) . Et
l

Consequently, T 1 = T 2, E~ = E2 and E\ +E~ = E1+E3. On the other hand, by using eqn
(4) we obtain 0 ::;; (E3 - En· (E\ - E1) = E3 . E'l + E~ . E1 ::;; 0 and finally,
E3 -E~ = E\ -E1 = o.
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By a procedure similar to that used by Lucchesi el al. (1994b), it is easy to prove that
tensors E, Et, EC, Ee, T, T + crcI and T _crll are coaxial, so the constitutive equations (1)-(5)
and (7)-(9) can be written with respect to the basis {q\> q2, q3} of the eigenvectors of E.

Let {e h e2, e3}, {aj, a2, a3}, {bj, b2,b,} and {I I' 12, t,} be the eigenvalues of E, Et, EC
and T, respectively; the constitutive equations (1)-(5) and (7)-(9) are equivalent to the
system:

II = 2/.1(e l -al -bl) +A(el +e2+e3 -at -a2 -a3'~bl -b2-b3)
12 = 2J.l.(e2-a2 -b2) + Jc(el +e2+e3-a] -a2 -a3 -bl -b2-b3)
13 = 2J.l.(e3 -a3-b3)+A(e, +e2 +e3 -al ~a2 -a3 -b l -b2-b3)

(tl -crt)UI = 0

(t2-crt )a2 = 0

(t 3 -crl )a3 = 0
(tl +crC)b l = 0

(t 2 + crC )b 2 = 0

(1 3 +crC )b3 = 0
a l ~ 0, a2 ~ 0, a3 ~ 0
b l ~ 0, b2 ~ 0, b3 ~ 0

II _crt ~ 0, 12 _crt ~ 0, 13 _crt ~ 0

I] +crc ~ 0, t2 +crc ~ 0, 13 +ac
~ 0

alb j +a2b2+a3b3 = O. (10)

Given the total deformation E, the elastic moduli J.l. and Aand the material constants aC and
crt, the principal components {al,a2,a3}, {b1>b2,b3} and {t,,12,t3} satisfying eqn (10) can
be calculated as functions ofel, e2, e3' Their calculation requires definition ofthe following sets:

fJl 2 = {EESym;2el +atrE+ec < 0,

2:xe2 +4(1 +a)e3 - aeC
- (2 + a)e' ~ 0, 2(1 + a)e2+ ae 3+ eC

~ O},

fJl 3 = {EESym;2(1+a)e2+ae3+ec < 0,

(2 +3a)e3- aec
- (l +a)e t

~ 0, (2 +3:x)e3+eC
~ O},

fJl 4 = {E ESym; (2 + 3a)e3 + eC < O},

fJls = {EESym;2e3+atrE-e' > 0,2(I+a)e2+aej-el ~ 0,

4(1 + a)e, + 2ae3+ ael + (2 + :x)eC
~ O},

fJl 6 = {EESym; 2(1 +a)e2 +ae j -e' > 0, (2+3a)e l _el ~ 0,

(2 + 3a)e l + ae' + (l + :x)eC
~ O},

fJl 7 = {EESym;(2+3a)el-el ~ O},

fJlg = {E ESym; 2(2 + 3a)e2-:xec- (2 + a)el ~ 0, (2 + 3a)el + ae' + (l + a)eC ~ O},

fJl 9 = {E ESym; 2(2 + 3a)e2+ ael + (2 + a)eC ~ 0, (2 + 3a)e3- aec
- (1 + a)6' ~ O},

2(2 + 3a)e2- aec
- (2 + a)el ~ 0,2(2 + 3a)e2 + ae' + (2 + a)eC

~ O},
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where we have put a = AjfJ,t eC= uC/fJ and et = ut/fJ_ Moreover, we suppose that the eigen
values e], e2 and e3 are ordered in such a way that el ~ e2 ~ e3- It is easy to prove that in
the regions f7i2, ~6 and ~8 we have e[ < e2 ~ e3 and that in f7i3, ~5 and ~9' el ~ e2 < e3 ;
finally in ~10 the eigenvalues of E are distinct.

Solving system (10), we obtain the principal components of E\ EC and T:

ifEEf7i[ then at = 0,

b l = 0,

b2 = 0,

b3 = 0,

t l = fJ[(2+a)e[ +a(e2 +e3)],

t2 = p[(2+a)e2 +a(e[ +e3)],

t3 = fJ[(2+a)e3 +a(e[ +e2)];

t2 = p{2e2 + 2:a [2(e2 +e3) _eC]},

t3 = fJ{2e3 + 2: a [2(e2 +e3) - e
C
]};

a eC

. b2 = e2 + 2(1 +a) e3 + 2(1 +a) ,

b3 = 0,

t In the following we assume ). ;;;, 0, so that we have (1. ;;;, O.

(11)

(12)

(13)
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ifEE9fs then G I = 0,

tz = -2
11

[4(1 +a)ez +2ae l +aat
],

+a

a at
Gz =ez+2(1+ex)el-2(1+a)'

ex at
G3 = e3 + 2(1 +a) e1- 2(1 +ex) ,

b l = 0,

(14)

(15)

(16)
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et

a, = e, - 2+3:x'

et

a~ = e2- 2+3:x'

et

a3 = e3- 2 + 3:x '

b l = 0,

b2 = 0,

b3 = 0,

if E E 9t's then a\ = 0,

:xee (2 + 0:)el

a2 = e2 - 2(2+30:) - 2(2+3:x)'

(17)

2(2+30:)

(2 + :x)et

2(2 + 3:x) ,

b _ (:x + l)eC
~

, - e\ + 2+3:x + 2+30:'

:XBC (I + :x)el

a3 = e3 - -2-+-3~:x - -2-+-3-'-:x-'

(0:+2W o:el

01 = e, + 2(2+3:x) + 2(2+3:x)'

(:x+2)BC o:e t

b2 = e2+ 2(2+30:) + 2(2+3:x)

(18)

(19)
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ifEE~lO then a] = 0,

~ ~+2 t ~ c

U3 = C3 + 2(1 +~)C2 - 4(1 +~) f; ~ 4(1 +~) 8.

(20)

Therefore, given a symmetric tensor E = L;~ I e,q, ® q, and having determined the region
~k to which E belongs, the solution to the constitutive equations (1)-(5) and (7)-(9) is

3

E' = L a,q, ® q"
j=l

3 3

EC = L b,q, ® q" T = L I,q, ® q"
i= 1 i=l

with ai, b, and I, given in eqns (11 )-(20).
We shall denote by T the function T: Sym -4 Sym which associates to every tensor

E = L;=] eiqi ® qi the stress T = T(E) = L;= I I,q, ® q,. T is a continuous non-linear, non
injective function, positively homogeneous of degree one (Del Piero, 1989),

T(~E) = o:T(E) V~ ;;:: 0, VEE Sym

and isotropic,

T(QEQT) = QT(E)QT VQEOrth, VEESym;t

moreover, we shall prove that T is differentiable in the internal part of every region ~i'

Now we analyse the plane strain and the plane stress separately. If E is a plane strain
and, in particular, e3 = q3' E q3 = 0, then a3 = b3 = 0 and 13 = [~/2(1 +~)] (I] +(2), Let us
designate E, E', EC and T as the restrictions of E, E', ECand T to the two-dimensional
subspace of 1/, orthogonal to the vector q3' Calculation of ai, a2, b], b2 , II and 12 which
satisfy system (10) requires definition of the following sets:

[/1 = {EESym;xel +(2+x)e2 -c:' ~ 0, (2+x)e] +~e2 +c:c
;;:: a},

[/2 = {EESym;e, > 2(1C:~X)}'

t Orth denotes the set of all tensors Q such that QT = Q -t.
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I)(st+(2+I)()SC}.
4(1 + I)()

We still suppose that the eigenvalues el and e2 of E are ordered in such a way that eJ ~ e2'

We observe that in 9'3'9'4 and 9'6 the eigenvalues e1and e2 are distinct. Regions 9'b' . ·,9'6
in the el-e2 plane are illustrated in Fig. 1.

The principal components of E" EC and T can be calculated from the relations

ifEE9'b then al = 0,

b l = 0,

t] = ,u[(2 + I)()el +l)(eJ,

b2 = 0,

t2 = ,u[(2 + l)()e 2 +l)(etJ; (21)

ifEE9'2' then a] = el - 2(1 +1)() ,

b l = 0,

st
a2 = e2 - 2(1 +1)() ,

b2 = 0,

(22)

I I! I I f I I / I I I e2 I / 1\III IIIIIIIII II \
II 1111 1 11111 1 1/\\
II IIIIIIIIIIIII \\
II IIIIIIIII III \\

~"'-7--..1 11111111111;1 \\\
1111 I 1111I II \\\

I :/,1 I I I I I I I I I I I \ \ \ \
11311111111 1 1 ,,\\
III 1 1 1I1I1 1 () \

--'="=!="='="=='=!::='='='r='=::!::::'='==k-I I I I I I I I I I I _/ 2+a E
t +aE~ \ \- -r-t- .f-77-r-r-t-l-r / \ \ \

------~~-----.:..4

(2ta) EC

e2 =- -a- e, - a

e,

a Et
e2 =- --e,+-

2+a 2+a

Fig. 1. Subdivision of the half-plane e\ ~ e2 into the regions Y'" i = 1, .... 6.



1970 M. Lucchesi et al.

:x r,t
a2 = e2 + 2+:x e , - 2+0:

(23)

4,u(1 +a) a
t2 = 2+a e2 - 2+a (Ic;

(24)

ifEEY'6' then a, = 0,

(25)

b - + (2 + a)r,< +:xr,' b
2

= 0,
J - e l 4(1 +a) ,

(26)

From the relation t3 = [a/2(1 +a)] (tl + t2) and from the non-negativeness of a, it follows
that the eigenvalue t3 of T satisfies the inequalities - (IC ~ t3 ~ (II as well.

Now let us consider a plane stress and suppose t 3 = Q3' T Q3 = 0. Then a3 can be set
equal to zero and b 3 , by virtue of the positiveness of (Ie, must be equal to zero, so that we
have e3 = [a/2+a] (a l +a2 +b l +b2-e, -e2). Let us still designate E, E" EC and T as the
restrictions of E, E" EC and T to the two-dimensional subspace of i/, orthogonal to the
vector Q3' In order to calculate the values of ai, a2, b lo b2, t l and t 2 which satisfy system
(10) we define the following sets:

~ { (2 +a)r,l }
3 2 = EESym;e 1 >2(2+3:X)'

w _ {. t (2+:x)e
t

2(1+aw+ae
1

}

3 3 - EESym, 2ae l +4(I+a)e2-(2+a)r, > O,e l ~ 2(2+3a),e, ~ - 2(2+3a) ,

or { . (2 + a)e< ar,C+2(1+a)r,I}
3 4 = EESym;4(I+a)e,+2iXe2+(2+a)r,c<0.e2~-2(2+3a),e2~ 2(2+3a) ,

~ _ { . (2+a)r,'}
3 5 - EESym,e2 < - 2(2+3:x) ,

:Y _ { S' iXr,c + 2(1 + a)r,l ae1+2( I + iX)ec
}

6 - EE ym,e2 > 2(2+3a) ,e, < - 2(2+3a) .
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We observe that in :Y3, :Y4 and :Y6 the eigenvalues e 1 and e2 are distinct. The principal
components of E t

, EC and T can be calculated from the relations:

b l = 0, b2 = 0,

t l = 2ple1 + i:a (e l +e2)} t2 = 2ple2 + 2:a (e l +e2)} (27)

ifEE:Yb then
(2+a) t

aj = el ~ 2(2+3a) B,

b l = 0,

(2+a) t

a2 = e2 - 2(2 + 3a) B ,

b2 = 0,

(28)

a (2+a) t

a2 = e2 + 2(1 +a) el - 4(1 +C() e,

b2 = 0,

(29)

C( (2 +a)i;"
b l = e l + 2(1 +a) e2 + 4(1 +~' b2 = 0,

p(2 + 3a) a
t 2 = 1+C( e2 - 2(1+a)(Jc; (30)

(31 )

aBC + 2(1 + C()e t

a2=e2- 2(2+3a)

(32)

3. THE BOUNDARY-VALUE PROBLEM

The equilibrium problem for masonry-like solids (infinitely resistant to compression
and with (Jt = 0) has been studied in recent years and the existence of a solution has been
proven solely for a rather restricted class of load conditions (Giaquinta and Giusti, 1985;
Anzellotti, 1985). On the other hand, the uniqueness of the solution is guaranteed only in
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terms of stress, in the sense that different displacement and strain fields can correspond to
the same stress field.

Similar considerations can be made for a BCS masonry-like material; in this section
we prove that the stress field which satisfies the equilibrium problem for a BCS masonry
like material is unique. To this end, let fJ4 be a solid made up of a BCS material and let g u

and g r be two subsets of the boundary afJ4 of fJ4, such that their union covers afJ4 and their
interiors are disjointed.

A load (b, so) defined in fJ4 x g rwith values in 1/ x 1/ is admissible if the corresponding
boundary-value problem has a solution, i.e. if there exists a triple [u, E, T], constituted by
a stress field T, a strain field E and a displacement field u defined on 14, piecewise CZ

, such
that

T = T(E) = ClE-Et-EC
],

u=O on gu,

Tn = So on gr,

divT+b = 0 on PJ,

(33)

(34)

(35)

(36)

(37)

where n is the outward unit normal to gr, C = 2/1 ~ + 21 ® I is the elasticity tensor and Et

and EC satisfy with T the constitutive equations (1)-(9). It is easy to prove that if (b, so) is
an admissible load and [uj, E], T 1] and [uz, E z, Tzl are two solutions to eqns (33)-(37), then
T1(x) = Tz(x) for every XEPJ.

In fact, the triple [ii, E, T] with ii = UI - Ub E = E j - E z and T = T 1- T z satisfies eqns
(33) and (35); moreover it satisfies eqns (36) and (37) with So = 0 and b = O. Thus, in
agreement with the hypothesis on the smoothness of the solutions, a simple application of
the principle of virtual work proves that:

On the other hand,

LT'EdV= O. (38)

(39)

where Ee = E~ - E'2, and E~, E\ , Ei, E'2, E~ and E~ are the elastic part, the fracture strain
and the crushing strain corresponding to E 1 and E z, respectively. From eqn (38), by using
eqn (39) we obtain:

(40)

the first member in eqn (40) is equal to S" T . C ~ j [T] d V and then it is non-negative because
C is positive definite. By using eqn (9), the second member of eqn (40) results in:

L[(T 1 - (Ttl) •E~ + (Tz - (Ttl) . E\ + (T j + (TcI) •E~ + (T z + (Tel) . En d v,

which is non-positive by virtue of eqns (2), (3), (7) and (8). From the equality (40) we
obtain T' C~ I[T] = 0 everywhere in fJ4 and thus T = 0, which is the desired result.
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In order to solve the equilibrium problems for BCS masonry-like solids by using the
finite element method, we are often obliged for numerical reasons, to assign the load
incrementally. To this end, although the material being considered is elastic, we must also
consider the load processes and incremental equilibrium problem associated with them.

We then intend to prove that the numerical solution obtained by using an incremental
procedure is independent of the particular load process chosen; instead, it depends solely
on the final assigned load, provided that the load process considered is admissible in the
sense specified as follows.

A load process y(r), rE [0, f], is a function pair [b(x, r), soC\:, r)] with b and So defined
on ~ x [0, f] and Y'rx [0, f], respectively, differentiable with respect to r and such that
y(O) = O. Given a process y, let us suppose that for every r, y(r) = [b(x, r), so(x, r)] is an
admissible load and let [u(r), E(r), T(r)] be a solution to eqns (33)~(37) with b = b(r) and
So = so(r). A curve [u(r), E(r), T(r)] of solutions to eqns (33)-(37) is said to be regular ifit
is differentiable with respect to r. A load process y on [0, f] is admissible if, for every r E[0,
f], y(r) is an admissible load and if there exists at least one regular curve [u(r), E(r), T(r)]
of solutions to eqns (33)-(37). Let y be a load process on [0, f]; a regular curve
[u(r), E(r), T(r)] is an incremental solution to the boundary-value problem if for each
r E[0, f] we have

E = ~(Vo+ 'lot),

t = DET(E(r))[E],

0=0 on Y'u,

tn = So on Y'r,

and

divt+b = 0 on ~,

u(x,O) = 0, E(x,O) = 0, T(x,O) = 0 on ~,

(41)

(42)

where the dot· denotes the derivatives with respect to T-

It is immediately verifiable that, if y is an admissible process, then every regular curve
of solutions to eqns (33)-(37) is a solution to eqn (41). Moreover, each incremental solution
to the boundary-value problem is a regular curve of solutions to eqns (33)-(37). In fact, if
[u(r), E(r), T(r)] is a regular curve of solutions to these equations, differentiating them with
respect to r, we can immediately verify that [u, E, T] satisfies eqn (41). On the other hand,
if [u(r),E(r), T(r)] is an incremental solution, integrating eqn (41) on [0, r] and taking into
account eqn (42), we deduce that [u(r), E(r), T(r)] satisfies eqns (33)-(37) for each rE [0, fl.

From this result it follows that:

(a) if y is an admissible process, there exists at least one incremental solution to the
boundary-value problem;

(b) the solution to the incremental problem, if it exists, is unique in terms of stress, i.e. if
[u,(r), E,(r), TI(r)] and [u2(r), Eir), T2(r)] are tW? solutions to eqn (41) then

(43)

(c) if y and ({! are two admissible processes on [0, f], such that y(f) = ((!(f) and
[u,(r), E,(r), T,(r)] and [u2(r), E2(r), T2(r)] are two incremental solutions corresponding
to y and ({!, respectively, then

T] (x, f) = T2(x, f) for each XE~. (44)

This last result guarantees that the incremental solution does not depend on the load process
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at least regarding the stress. In fact, the common value of T I and T" at the end of the two
processes is the solution to the boundary-value problem [(33)-(37)] corresponding to the
load y(t) = ({J(t).

4. SOME EXPLICIT SOLUTIONS

In this section we analyse a circular ring and a spherical container made up of a BCS
material subjected to uniform radial pressures Pe and PI acting, respectively, on the outer
and inner boundary and we explicitly calculate the stress field at equilibrium with these
loads and the corresponding strain and displacement fields that, in this case, are unique.
The explicit solutions thus obtained will be compared in Section 6 with the corresponding
numerical results.

In the following, v and E are, respectively, the Poisson ratio and the Young modulus
of the material. Moreover, we suppose (Jt = 0, (JC > 0 to be fixed, and that Pe and Pi satisfy
the compatibility conditions Pe ~ (JC and Pi ~ (Jc. A stress field in equilibrium with loads Pe
and Pi, satisfying eqns (7) and (8) will be said to be statically admissible.

4.1. The circular ring
The circular ring Q shown in Fig. 2, having inner radius a and outer radius b, is

subjected to a plane strain as a consequence of the action of two uniform radial pressures
Pe and Pi acting, respectively, on the outer and inner boundary. Let us choose a cylindrical
reference system {O, p, e, z} in which the origin coincides with the centre of the ring and
the z axis is orthogonal to its plane.

It is known (Bennati and Padovani, 1992) that if (Pe/pJ :;<; (a" +b2)/2b", then the stress
field T(e) corresponding to a linear elastic material, having principal components

(45)

is negative semi-definite.
Let us begin by supposing

Fig. 2. The circular ring.
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then, for the circumferential stress, which is a monotonic function of p, the inequalities
a~el(a) ,,;; del(b) ,,;; -Pe hold.

If, in particular Pe and Pi are such that the condition:

is also satisfied, or, equivalently, if Pe ,,;; [(a 2 +b2 )/2b 2 ]Pi + [(b 2
- a2 )/2b2

] aC, then the stress
field T(e) is statically admissible. On the other hand, if Pe and Pi are such that the inequality:

holds, then a~el(a) < _ac, and T(e) does not satisfy condition (8). A statically admissible
stress field T can be obtained by starting from T(e) and using a procedure similar to that by
Bennati and Padovani (1992) for a circular ring made up of an elastic non-linear material
with bounded tensile strength.

In the attempt to find the solution, we may suppose that aR(P) is equal to - aC in a
circular ring 0t = {(p,8); pE[a,pc]}, where pcE[a,b] is unknown. In this region, for
equilibrium reasons, ap has the expression

Consequently, the circular ring O2 = {(p, 8) ; p E [Pc, b]} is subjected to both external pres
sure Pe and an internal pressure whose value is Pc = aC-(a/pc)(aC-pJ. Moreover, for
continuity reasons, aR(p:) = _ac, On the other hand, in O2 the solution coincides with the
linear elastic one; thus,

and Pc is a solution to the algebraic equation

which, if (aC- Pe)/(aC
- pJ ~ (a/b), that is if Pe ,,;; (a/b)pi + [(b-a)/b] aC, has in [a, b] the sole

root

(46)

It can be seen that when the ratio (aC-Pe)/(aC-pJ decreases from (a 2 +b2 )/2b2 to alb, Pc
correspondingly varies from a to b. Finally, the stress T having principal components:



1976 M. Lucchesi et al.

P E [a, pel,

(47)

(48)

is statically admissible.
In agreement with the constitutive equations (1 )-(5) and (7)-(9), in Q 2 the fracture

strain and the crushing strain are nil; the total deformation has components:

the radial displacement is:

In Q 1 the fracture strain is nil and the total deformation has components:

(51 )

(52)

where the circumferential crushing strain c~ is a non-positive function of P which needs to
be determined. The radial displacement, obtained by integrating cp is:

where k = - [(I + v)/E](aC
- pJa[v + (l- v) In Pcl is a constant whose value is determined

by imposing the continuity of the radial displacement at P = Pc. By virtue of eqn (52) we
have:

1- v
2

a (p)
c~(p) =-E--(aC-pJln -, pE[a,pc],

P Pc
(53)

therefore the crushing strain is negative in Q 1 and zero when P = Pc. It is interesting to
remark that if (a/b) < (aC

- Pe)/(aC
- Pi) :( (a 2 +b2 )/2b 2

, besides the stress field, the strain
and displacement fields are also unique, whereas if (aC

- Pe)/(aC
- Pi) = (a/b), the dis

placement and thus the circumferential crushing strain are not unique and depend upon
the constant k. If the ratio (a C

- Pe)/(aC
- pJ is less than the critical value alb, there are no

statically admissible stress fields.
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Now, let us suppose

a2 +b2 Pe
---::::;-::::; 1.

2b 2 PI

1977

In this case we have de)(b) ~ dei(a) ~ -P" and moreover, by virtue of the inequalities

the condition (J~e)(b) ~ _(Jc is always satisfied, so TIe) is a statically admissible stress field.
Finally, we need to consider the case:

If Pe and Pi also satisfy the inequality (Pe/P;) ~ (a/b), then the semi-definite negative stress
field T calculated by Bennati and Padovani (1992), having principal components:

0,

PE [a, PI],

(54)

(Je(P) = apt (P: _ ~),. pE[Pt,b];
2 P- Pt

(55)

is statically admissible, since (Jo(a) ~ (Jib) ~ - Pe- The transition radius from the region in
which E t ¥- 0 to the one in which E t = 0 is :

(56)

in particular, if (Pe/pJ = (a/b), Pt = b and if (Pe/P;) = (a 2 +b2 )/2b2
, then Pt = a. We can

remark that, according to the elasticity of the material, the radius Pt depends only on the
current values of the loads Pi and Pe. Therefore, contrary to what happens for elastic-plastic
materials, one has no interest in considering cyclic loading processes. The crushing and
radial fracture strains are both nil and the circumferential fracture strain is :

pE [a, P,],

PE [Po b].

(57)

Once Pi has been fixed, the cracked regions that is those where c:h is non-nil, can be
increased or diminished, by decreasing or increasing Pe, respectively. Finally, for values of
Pe/Pi less than alb no statically admissible stress field exists. Now we increase the external
pressure Pe from (a/b) Pi to (a/b) PI + [(b -a)/b] (Jc, while maintaining the internal pressure Pi
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(a)

(e)
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(bl

(d)

o
E'=O EC=O

E'=O E"=O

Fig. 3. Evolution of the inelastic strain for different values of Po.

constant. Figure 3 shows the evolution of the inelastic strain for different values of Pc.
When Pc = (a/b) Pi (Fig. 3a), the crushing strain is nil and the fracture strain is non-zero
throughout the circular ring; for Pe E [(a/b) Pi' ((a2+b2)/2b2)pJ (Fig. 3b), the crushing strain
is still nil and the region in which the fracture strain is non-zero diminishes progressively
and disappears when Pe falls within the interval [((a2+b2)/2b2)pi,((a2+b2)/2b2)Pi+
((b2-a2 )/2b2

) aC
]. In fact, for these values ofPc (Fig. 3c) the crushing and the fracture strain

are zero. For Pc increasing from ((a 2 +b2 )/2b2 )Pi +((b2 _a2 )/2b2
) aC to (a/b) Pi +

((b-a)/b)aC (Fig. 3d), the fracture strain remains equal to zero and the region in which
the crushing strain is non-zero progressively extends and covers the whole of the circular
ring when Pc reaches the value (a/b) Pi + ((b - a)/b) aC (Fig. 3e). For values of Pe less than
(a/b) Pi and greater than (a/b) Pi + ((b - a)/b) aC there are no statically admissible stress fields.

4.2. The spherical container
Let us consider a spherical container Q, made up of a BeS material with inner radius

a and outer radius b, subjected to two uniform radial pressures: a pressure Pe acting on the
external boundary and a pressure Pi acting on the internal boundary. Let {O, p, e, q>} be a
spherical reference system, with origin 0 coinciding with the centre of the container.

Bennati and Padovani (1992) have shown that if (Pe/pJ ~ (2a 3 + b3 )/3b3
, the stress

field T(c) corresponding to a linear elastic material and having the principal components:
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(e) _ a3b3
(Pe - pJ 1 Pia3 - Pe b3

ap - + ,
b3_a3 p3 b3_a3

a~e) = a~) = _ a
3
b

3
(Pe - pJ 1 + Pia} - Peb3 ,

2(b3-a3) p3 b3_a3

is negative semi-definite. First of all, let us suppose:

Pe>- 1
?' ,

p,

1979

(58)

so the circumferential stress satisfies the boundary inequalities a~el(a) ~ a~e)(b) ~ -Pe'
Furthermore, if:

then the elastic solution (58) satisfies condition (8) and T(e) is statically admissible. On the
contrary, if:

then a~e)(a) < - aCand T(e) is not statically admissible. Using a procedure similar to that
used for the circular ring, we may suppose that the spherical region asl = {p; PE [a, Pc]},
where Pc has to be determined, is subjected to the equilibrated stress field:

a2

ap(p) = ----:; (aC
- Pi) - a",

p-

ae(P) = aqJ(p) = _ac.

Consequently, the remaining spherical region as2 = {p; PE [Pc, b]} is subjected to the exter
nal pressure Pe and to the internal pressure Pc = aC_(a2/p~)(aC-pJ. On the other hand,
for continuity reasons, equalities ae(pt) = aqJ(pt) = _ac must hold. Finally, by virtue of
eqn 53, we determine that if the ratio (aC- Pe)/(aC- pJ satisfies the inequalities:

a statically admissible stress field will have components:

_aC
,

PE [a, Pc],

(59)

PE [a, Pc],

(60)



1980 M. Lucchesi et al.

The radius Pc, which separates the zone where EC # 0 from the zone in which EC= 0, is the
sole real root belonging to [a, b] of the third degree polynomial:

in particular if (aC-Pe)j(aC-pi) = (a 2W), then Pc = b and if (aC-Pe)/(aC-Pi) = (2a 3 +b3
)/

3b3
, then Pc = a. In fact, it easy to verify that q(a) ? °and q(b) ::::; 0, moreover in the

interval [a, b], q(p) is a decreasing function, thus there exist a unique PcE [a, b] such that
q(pc) = 0. The value of Pc may be determined by using the well-known Cardano's formula,
the calculation is here omitted for the sake of simplicity.

The circumferential displacement is nil for symmetry reasons, the radial displacement
and the circumferential component of the crushing strain are univocally determined and
have the expressions:

~ {-0- 2v)aC p + (aC-- Pi)a2 [0- v) ~ - ~J},
E ~ p

u(p) =

I {[ a
2 J p a

2

}~E (l-2v) -ac+(aC-pa-, p-(I+v)-=-;-(aC-pa,
3p; 3p-

(61)

I-va
2 (1 I)C -- -(aC-pi) -- - - ,

Ge(P) = E P Pc P

0,

(62)

The fracture strain and the radial component of crushing strain are nil.
For values of (aC- Pe)/(aC- pa less than a2 /b2 there are no statically admissible stress

fields. IfPe/Pi satisfies the inequalities:

then -Pe ? a~e)(a) ? del(b) and T(el is a statically admissible stress.
Finally, the case in which

has been already studied by Bennati and Padovani (1992); a statically admissible stress
field has the principal components

(63)

0,

ae(P) = a
2
pi (~_~)

3
' pE[pt,b];

p
3

P~

where Pt is the sole real root belonging to [a, b] of the cubic equation:

(64)
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and separates the region in which the circumferential fracture strain is non-zero from the
region in which it is zero. When Pe/PI varies from (2a 3 +b3 )/3b3 to a2 /b 2

, radius Pt cor
respondingly varies from a to b. The crushing strain is nil, the radial displacement is:

a
2
pi [1 1]~ --(l-v)- ,

E P Pt
u(p) =

P a
2

[ p
3

]3~ p~ (2v-l)p+(l+v) P~ ,

and the circumferential fracture strain is :

P E [a, Pt],

(65)

(66)

0,

For values of Pe/Pi less than a2 /b 2
, there are no statically admissible stress fields.

5. THE NUMERICAL METHOD

In this section we calculate the derivative DET ofT = T(E) with respect to E. Knowing
this derivative allows calculation of the tangent matrix and determination of the dis
placements by solving a non-linear system obtained by discretisation into finite elements
via the Newton-Raphson method.

The algorithm used for the numerical solution of the equilibrium problem in the
presence of incremental loads has already been described by Lucchesi et al. (l994b) and is
thus omitted here.

Differentiating T with respect to E requires some preliminary results.
Let Sym* stand for the subset of Sym of all symmetric tensors having distinct eigen

values. Given AESym*, let A], A2' A3 with;'1 < A2< A3 and g], g2' g3 be the eigenvalues and
the eigenvectors of A, respectively.

Putting, for convenience,

we propose to prove the following:t

(67)

(68)

(69)

tHere DAAi is the derivative with respect to A of the function Ai: Sym* ---> ~, AI ---> A,(A) ; analogously DAgi@ gj
is the derivative with respect to A of the function gi® gi' This last function is well defined since, by virtue of the
fact that the eigenvalues of A are distinct, the eigenvectors g, are uniquely determined from the relations Agi = Aigi,
i = 1,2,3.
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(70)

(71)

(72)

It is sufficient to prove eqns (67) and (70), because the other relations can be proven in a
similar way. Let us consider A ESym*, HE Sym to be fixed and I:( E IR ; let Al (I:() and gl (I:() be
the smallest eigenvalue and the corresponding eigenvector of A+I:(H, respectively:

(73)

Since we are interested in the behaviour of AI (I:() and gl(l:() for I:( near zero, within an error
of order 0(1:() we can put:

(74)

where }'l = AI (0), gl = gl (0) and the superimposed dot· denotes differentiation with respect
to 1:(. By substituting eqn (74) in (73) we obtain:

(75)

Since gl •gl = 1, then gj(O) •gl = 0; thus if we multiply eqn (75) by gl we have

(76)

Because, for every H in Sym we can write

by virtue of eqn (76) we obtain eqn (67).
In order to calculate the derivative of gl ® g), we have to calculate the derivative of gl'

To this end, by substituting eqn (76) into eqn (75), we obtain:

(77)

Since gl and gl (0) are orthogonal, we can write:

(78)

where X and ~ are scalars which depend on A. By substituting eqn (78) into eqn (77) the
relation

(79)

follows. Multiplying eqn (79) by g2 and by g3, we obtain respectively,
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Thus, from eqn (78) and eqn (80), by virtue of the symmetry of H, we have:t

1983

(80)

The desired result follows from the relation:

Now we are in a position to calculate the derivative of the stress with respect to the total
deformation in the 10 regions g{i' Let us consider the orthonormal basis of Sym:

0, = ql ® qJ,

02=q2®q2'

0J=q,®qJ,

I
0 4 = ~(ql ® q2 +q2 ® qj),

y'2

I
05 = -r=(qj ®q,+qJ ®qj),

V2

I
0 6 = ----;= (q2 ® q, +qJ ® q2),

V2

and the spectral representation of T :

3

T = I liOi
i=l

(82)

(83)

where t h t2 and t J are given in eqns (11)-(20). From eqns (II), (14) and (17) it follows that
the expression of DEf(E) for E belonging to g{h ~4 and ~7 can be easily calculated; the
calculation of DEf(E) when E belongs to the seven other regions is slightly more complex
and requires differentiating eqn (83). In order to differentiate eqn (83) with respect to Ewe
must use the previously calculated derivatives of the eigenvalues of E and the tensors O},
O 2 and 0 3 with respect to E.

As a single example, we shall calculate DEf(E) when EE.gfb where e j < e2 ~ e3' Let
us begin by supposing e l < e2 < e3 ; from eqns (83), (22) and (67)-(72), using the relation:

we obtain:

t Here, given u, v, WE 'I", u ® v ® w denotes the third-order tensor defined by u ® v ® w H = (v ® w· H) u,
HELin.
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where f(e2' e3) = 2/1(e3 - e2)/(e3 - e2). When e3- e2 goes to zero,f(e2' e3) converges on 2/1
and then eqn (84), withf(e2' e3) = 2f.1, holds also when e3 = e2·

Finally, we summarise the expression of DEteE) in the 10 regions /~i:

(85)

(88)

(91 )

(92)

(93)
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where ~ and I[]l are the fourth-order identity tensor and the fourth-order null tensor,
respectively. It is note-worthy that the expressions given in egns (86)-(94) are the spectral
representations of DET(E) in the nine regions ;J"f2-~1O' Moreover, it can be easily verified
that the eigenvalues of DET(E) are non-negative and so the strain-energy density
'P(E) = ~T(E) . E is a convex function. The same result has been proven by Del Piero (1989)
for materials not supporting tension and infinitely resistant to compression.

We conclude this section by listing the expression for the derivative of the stress for
plane strain and plane stress.

For the plane case, let el < e2 be the eigenvalues ofE and ql and q2 be the corresponding
eigenvectors, putting:

0 1 = ql @ql,

O 2 = q2 @q2,

we have:

F or plane strain, the derivatives of T in the six regions Y' ,-Y'6 are

(95)

(96)

(99)

(100)

For plane stress we have:
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6. NUMERICAL EXAMPLES

(101)

(102)

EE3""3' (103)

EE3""4' (104)

(105)

(106)

6.1. The circular ring
In this section we numerically solve the problem of the circular ring considered in

Section 4. The finite element analysis is performed using the calculus scheme described by
Lucchesi et al. (1994b), by means of the tangent stiffness matrix calculated with the help of
the fourth-order tensor DET(E) deduced in the previous section. For the numerical cal
culation of the solution, the following values of the constants have been used:

a = 1 m,
b = 1.5 m,
Pi = 0.1 MPa,
Pe = 0.23 MPa,
(JC = 0.5 MPa,
v = 0.1
E = 5000 MPa.

In this case the ratio «(Jc - Pe)/«(Jc - Pi) = 0.675 lies within the interval
[(a/b), (a 2 +b2 )/2b2

] = [0.667,0.722] and the transition radius is approximately Pc = 1.28
m. For symmetry reasons, only a quarter of the circular ring was studied, and this was
discretised into 400 eight-node elements; convergence was reached in three iterations.
Figures 4, 5, and 6 show the behaviour of the radial stress, circumferential stress and
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circumferential crushing strain. The continuous line represents the exact solution, the bold
points, the numerical solution.

The circular ring was successively subjected to a load process with Pi = 0.1 MPa and
Pe increasing from PeO = 0.0667 MPa to Per = 0.2333 MPa. In Fig. 7 the behaviour of radius
p*, which separates the region in which the inelastic deformation E t +EC is non-zero from
the region in which E t +EC = 0, is shown. In accordance with eqns (56) and (46), the
expression of p* is:

1.5(1.5
Pe

- J2.25
P

: -1), Pe/Pi E [0.667, 0.722],
PI Pi

P*(Pe/pJ = 1, Pe/PiE [0.722, 2.11 1],

0.375[1.5(5-~~)- J2.25(5-~~J -16} Pe/Pi E [2.111,2.333].
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6.2. Mosca's bridge
The Mosca's bridge over the Doria Riparia, Turin, was constructed in 1827. It consists

of 93 voussoirs made of Malanaggio granite, has a span of 45 m, an intrados rise of 5.5 m
and thickness varying from 2 m at the springing to 1.5 m at the crown (Fig. 8). Mortar has
been interposed only in the first II joints at the springings and the 22 joints nearest the
crown. The bridge has been studied by Castigliano (1879) with the goal of verifying the
advantageous effect of mortar joints on the behaviour of the line of thrust. In fact Cas
tigliano has proven that when the mortar is accounted for, the line of thrust is contained
entirely within the middle-third, while considering the arch ring as a monolith leads to a
value of eccentricity e at the springing of 0.557 m, as opposed to a value of the middle-sixth
of 0.33 m, corresponding to an opening of 0.682 m at the extrados. In order to obtain this
last result, Castigliano considered a linear elastic material and used an iterative procedure.

Our goal is to determine the line of thrust by using the numerical method described in
this paper under assumptions of infinite crushing stress (Je and nil fracture stress (Jt. The
arch ring is considered to be a monolith subjected to a plane strain; it is discretized into
800 elements with four nodes and four Gauss points, disposed in eight longitudina11ines,
each consisting of 100 elements. The amount of loads is equal to that considered by
Castigliano in his study, but rather than concentrating the total load in 12 points, we have
assigned the weight of the arch ring as a body force and the rest of the load (the permanent
load and the overload) has been distributed on the extrados. Figure 9 shows the behaviour
of the line of thrust;t it is contained entirely within the middle-third except in the region
delimited by the springing and the normal section 2.87 m from the springing, that is, the
approximate region of the first six voussoirs. In particular, the eccentricity value at the
springing is 0.616 m, with a corresponding opening of 0.848 m at the extrados. The
horizontal component of thrust at the abutments is 3.963 x 106 N m-I; this is 17% higher

i ~ 0

I J ",9

----------------------~--------------------- J
=~1__~~~~~~-------45.00 I

Fig. 8. Mosca's bridge.

t Stress state being determined by using the finite element method, we calculate the normal force N and the
bending moment M in each normal section of the arch by means of an integration composite trapezoidal open
rule using 50 intervals. In order to draw the line of thrust, the eccentricity e (i.e. the signed distance of the line of
thrust from the mean line of the arch) is obtained from the well-known relation e = M/N.



---------------

Masonry-like solids with bounded compressive strength

Fig. 9. The line of thrust for Mosca's bridge.

Fig. 10. The isostatic lines near the springing.

1989

than Castigliano's result (3.2728 x 106 N m- I
). The greatest compression stress is obtained

at the extrados in the springing and has the value of 7.6 MPa. The region characterised by
the openings is illustrated in Fig. 10, where the isostatic lines are also drawn.

6.3. The three-dimensional arch
Let us consider the reduced circular arch whose springings are fixed, shown in Fig, II,

The arch is subjected to its own weight and a load P, constant per unit span, distributed
along the extrados. For symmetry reasons, only a quarter of the structure was studied and
this was discretized into 300 isoparametric three-dimensional elements with 20 nodes and
27 Gauss points. We suppose that the material constituting the arch is not resistant to
traction ((Tt = 0) and has a crushing stress (TC = 8.82 MPa. The distributed load is pro
gressively increased until the value Po beyond which the convergence cannot be reached;
Pc, interpreted here as collapse load, resulted equal to 0.405 MPa.

Collapse occurs because of the formation of a number of hinges sufficient to render
the structure labile. The constitutive characteristics of the material suggest supposing that
at the instant of collapse in the normal sections of the arch where there are the hinges, the
normal stress (T is constant and equal to (TC in an interval having an extremum coinciding
with the intrados or the extrados and nil elsewhere. Figure 12 where (T = - (TC for d ~ y ~ h/2
and (T = 0 for - h/2 ~ y ~ d, shows one of these situations. The straight line parallel to the
x axis and at a distance equal to d from it, is called the neutral axis.

Let us suppose that a section of the arch is at the limit state. Let N, M and e = M/ N
be the normal force, bending moment and eccentricity, respectively; from Fig. 12 we
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30·

Fig. II. The reduced circular arch.

y

Fig. 12. Stress distribution in a normal section which is a hinge site.

-+p

-+

deduce:

(107)

from which, putting N C = -hac, we obtain:

d= _ ~ (1 _2N) IMI.
2 w M'

Nh( N)IMI = -- 1--
2 NC

(108)

(109)
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Fig. 13. The admissible region.

and

lei =_IMI =~(1- N).
N 2 N C

(110)

Then let us consider any section, not necessarily at the limit state; from eqn (110) we
deduce

h( N)lei ~ - 1- - ,
2 N C

(111 )

therefore, that for each plane parallel to the mean plane, the line of thrust is contained
entirely within the region of the arch delimited by the two curves having equations

y = - ~ (1 - ~), y = ~ (1 - ~).
2 N C 2 N C

(112)

For each normal section, let us put:

Nh( N)IMIljJ(N,M)=M+-' 1---.
2 N C M

(113)

The admissible region, defined by the relation ljJ(N, M) ~ 0, is constituted by all pairs
q = (N, M) which are compatible with the constitutive properties of the material; the curve
r having equation ljJ(N, M) = 0 is called limit curve (Fig. 13). In order for a section to be
a hinge site, it is necessary that the relative normal force N and bending moment M belong
to r; in this case the line of thrust is tangent to one of the two curves defined in eqn (112).
Let us now suppose that q = (N, M) belongs to r and let us put rx = «(j, cp), where (j is the
extension of the mean line of the arch and cp is the relative rotation of the section (Fig. 14).
It is easily verified that from relation (9) it follows that the generalised displacement rx is

I
! I

\;' /

----\01-----=4-/--t-
I d

\
\
\ I
\ I

fJJ {

Fig. 14. Generalised displacement of a normal section.
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kinematically admissible if and only if it has the same direction of the gradient of IjJ calculated
at q. Thus, since in view of eqn (113) the gradient of IjJ is:

is and qJ must satisfy the condition

b-qJ~ (1-2 N) IMI = 0,
2 N C M

and, by virtue of eqn (108), we can write:

b = -qJd.

(114)

(115)

(116)

So, at the instant of collapse, the sections which are hinge sites rotate round the neutral
axis.

In order to calculate the internal work .Pi for each hinge, let us consider q belonging
to r and a an admissible generalised displacement. From eqns (109) and (115), recalling
that N C = - hac < 0 and by assuming qJ and M to have the same sign, we immediately
deduce:

Nh [( N) ( N)J IMI N
2

h IMI N
2

.Pj=q"a=No+MqJ=qJ- 1-2- - 1-- -= -qJ--= +-lqJl.
2 N C N C M 2NC M 2aC

(117)

Figure 15 shows both the line of thrust and the two curves given in egn (112) drawn in
correspondence of the last load increment for which the convergence is reached. From these
curves one immediately deduces the mechanism of collapse, and the position of the five
hinges may be estimated with a close approximation. The distance of the five hinges from
the mean line of the arch is determined using relation (108), the normal force in the section
being already known.

Figure 16 shows the circumferential stress. The maximum level of compression is
reached at the extrados, near the crown and the springing, and at the intados in the
proximity of haunches; in the remaining zones the circumferential stress is nil and the
material does no work.

In order to check the results of the analysis, we determine an upper bound of the
collapse load by using the hinge positions and the corresponding values of the normal force
obtained numerically. For symmetry reasons it sufficient to consider half of the arch, as
shown in Fig. 17.

Fig. 15. The line of thrust when collapse is reached.
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Fig. 16. Circumferential stress distribution when collapse is reached.
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Fig. 17. Collapse mechanism.

Assigning the resultants of load and their own weight to the two sections into which
the hinge C 12 divides the half arch under consideration, the virtual work principle allows
one to write

where, by virtue of eqn (117),

(118)
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(119)

with N], N z and N 3 the normal forces at the springing, at the hinge e l2 and at the crown,
respectively. Moreover, referring to Fig. 17, we have

(120)

Since ({!2 = ({!Jh 2 /(h 2 -h 3 ), ft'j and ft'e may be expressed as function of ({!I; the angle ({!" in
turn, may be eliminated from both sides of eqn (118). From this last relation one can obtain
the value of the collapse load, which in our case is 0.42 MPa, with a 3% margin of error.

7. CONCLUSIONS

The numerical examples presented in Section 6 show that the constitutive model of
BCS materials and the numerical techniques proposed in this paper, allow a realistic
description of the static behaviour of masonry structures, at least in several cases having
practical interest.

The generalisation made by setting a limit to the maximum compressive stress the
material can sustain, even if it makes the constitutive equation more complicated, allows a
more realistic evaluation of the stress field, as shown by the last numerical example. Even
if the BCS material is hyperelastic, the non-linearity of the constitutive equation requires
that in the numerical applications the load is assigned incrementally. On the other hand
this procedure is justified by the fact that, as proven in Section 3, the stress does not depend
on the particular load process.

In this model cracks arising in a body are represented by a part of the strain, namely
the fracture strain. It is important to remark that in many cases the displacement field is
continuous, in spite of the presence of non-nil fracture strains, as it happens in the examples
presented in Section 4, where, even if the body is widely cracked, the displacement is
everywhere continuously differentiable. This fact allows to use the classical finite element
method which supposes the continuity of displacements.
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